Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nanomicro Lett ; 15(1): 131, 2023 May 20.
Article in English | MEDLINE | ID: covidwho-2324525

ABSTRACT

Most electronics such as sensors, actuators and energy harvesters need piezoceramic films to interconvert mechanical and electrical energy. Transferring the ceramic films from their growth substrates for assembling electronic devices commonly requires chemical or physical etching, which comes at the sacrifice of the substrate materials, film cracks, and environmental contamination. Here, we introduce a van der Waals stripping method to fabricate large-area and freestanding piezoceramic thin films in a simple, green, and cost-effective manner. The introduction of the quasi van der Waals epitaxial platinum layer enables the capillary force of water to drive the separation process of the film and substrate interface. The fabricated lead-free film, [Formula: see text] (BCZT), shows a high piezoelectric coefficient d33 = 209 ± 10 pm V-1 and outstanding flexibility of maximum strain 2%. The freestanding feature enables a wide application scenario, including micro energy harvesting, and covid-19 spike protein detection. We further conduct a life cycle analysis and quantify the low energy consumption and low pollution of the water-based stripping film method.

2.
Arch Virol ; 168(6): 161, 2023 May 13.
Article in English | MEDLINE | ID: covidwho-2316516

ABSTRACT

Porcine circovirus 4 (PCV4) is a recently discovered circovirus that was first reported in 2019 in several pigs in Hunan province of China and has also been identified in pigs infected with porcine epidemic diarrhea virus (PEDV). To further investigate the coinfection and genetic diversity of these two viruses, 65 clinical samples (including feces and intestinal tissues) were collected from diseased piglets on 19 large-scale pig farms in Henan province of China, and a duplex SYBR Green I-based quantitative real-time polymerase chain reaction (qPCR) assay was developed for detecting PEDV and PCV4 simultaneously. The results showed that the limit of detection was 55.2 copies/µL and 44.1 copies/µL for PEDV and PCV4, respectively. The detection rate for PEDV and PCV4 was 40% (26/65) and 38% (25/65), respectively, and the coinfection rate for the two viruses was 34% (22/65). Subsequently, the full-length spike (S) gene of eight PEDV strains and a portion of the genome containing the capsid (Cap) gene of three PCV4 strains were sequenced and analyzed. Phylogenetic analysis showed that all of the PEDV strains from the present study clustered in the G2a subgroup and were closely related to most of the PEDV reference strains from China from 2011 to 2021, but they differed genetically from a vaccine strain (CV777), a Korean strain (virulent DR1), and two Chinese strains (SD-M and LZC). It is noteworthy that two PEDV strains (HEXX-24 and HNXX-24XIA) were identified in one sample, and the HNXX-24XIA strain had a large deletion at amino acids 31-229 of the S protein. Moreover, a recombination event was observed in strain HEXX-24. Phylogenetic analysis based on the amino acid sequence of the PCV4 Cap protein revealed that PCV4 strains were divided into three genotypes: PCV4a1, PCV4a2, and PCV4b. Three strains in the present study belonged to PCV4a1, and they had a high degree of sequence similarity (>98% identity) to other PCV4 reference strains. This study not only provides technical support for field investigation of PEDV and PCV4 coinfection but also provides data for their prevention and control.


Subject(s)
Circovirus , Coinfection , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Phylogeny , Circovirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , China/epidemiology
3.
Journal of Pacific Rim Psychology Vol 15 2021, ArtID 18344909211034928 ; 15, 2021.
Article in English | APA PsycInfo | ID: covidwho-2286217

ABSTRACT

Many COVID-19 conspiracy theories implicate China and its agents, whether implicitly or explicitly, as conspirators with potentially malicious intent behind the current pandemic. We set out to explore whether Chinese people believe in pandemic-related conspiracy theories, and if so, how do their secure (in-group identification) and defensive (collective narcissism) in-group positivity predict their conspiracy beliefs. We hypothesized that national identification would negatively predict the tendency to attribute responsibility to an in-group, thus predicting less risk-rejection conspiracy theory beliefs (e.g., COVID-19 is a hoax). In contrast, national collective narcissism would positively predict the tendency to attribute responsibility for the pandemic to an out-group, which in turn would validate conspiracy theories that acknowledge the risk of the pandemic (e.g., COVID-19 is a bioweapon). To test these predictions, we collected data in China (n = 1,200) in April 2020. Supporting our predictions, national identification was negatively associated with risk-rejection conspiracy beliefs via in-group attribution, whereas national collective narcissism was positively associated with risk-acceptance conspiracy beliefs via out-group attribution. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

4.
Front Vet Sci ; 9: 902052, 2022.
Article in English | MEDLINE | ID: covidwho-2154852

ABSTRACT

The emergence of pseudorabies virus (PRV) variants brings serious harm to the swine industry, and its effective treatments are limited at present. As one of the probiotics, the Lactobacillus species have beneficial characteristics of regulating the balance of intestinal flora, inhibiting the growth of pathogenic bacteria and viruses' proliferation, and improving self-immunity. In this study, Lactobacillus plantarum HN-11 and Lactobacillus casei HN-12 were selected and identified through morphology observation, Gram stain microscopy, 16S rRNA sequencing analysis, and specific amplification of the recA gene and pheS gene. All tested isolates exhibited rapid adaptation to the different conditions, excellent acid, and bile tolerance, and sensitivity to Salmonella, Staphylococcus aureus, and Escherichia coli. The antibiotic susceptibility assay displayed the isolates sensitive to most antibiotics and resistant to Lincomycin and Norfloxacin. Moreover, the supernatants of HN-11 and HN-12 inhibited PRV proliferation in ST cells. The results of animal experiments showed that supplementing the challenged mice with the supernatants of Lactobacillus isolates in advance delayed the course of the disease. PRV was detected in the heart, liver, spleen, lung, kidney, and brain tissues of dead mice in the test groups, and its copies in the lungs were significantly decreased compared with the control mice (P < 0.05). These findings proved the advantages of L. plantarum and L. casei as potential probiotic cultures, which could provide a basis for its application in microecological preparations and functional formulations.

5.
NPJ Vaccines ; 7(1): 84, 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1960375

ABSTRACT

As the world continues to experience the COVID-19 pandemic, seasonal influenza remain a cause of severe morbidity and mortality globally. Worse yet, coinfection with SARS-CoV-2 and influenza A virus (IAV) leads to more severe clinical outcomes. The development of a combined vaccine against both COVID-19 and influenza is thus of high priority. Based on our established lipid nanoparticle (LNP)-encapsulated mRNA vaccine platform, we developed and characterized a novel mRNA vaccine encoding the HA antigen of influenza A (H1N1) virus, termed ARIAV. Then, ARIAV was combined with our COVID-19 mRNA vaccine ARCoV, which encodes the receptor-binding domain (RBD) of the SARS-CoV-2 S protein, to formulate the final combined vaccine, AR-CoV/IAV. Further characterization demonstrated that immunization with two doses of AR-CoV/IAV elicited robust protective antibodies as well as antigen-specific cellular immune responses against SARS-CoV-2 and IAV. More importantly, AR-CoV/IAV immunization protected mice from coinfection with IAV and the SARS-CoV-2 Alpha and Delta variants. Our results highlight the potential of the LNP-mRNA vaccine platform in preventing COVID-19 and influenza, as well as other respiratory diseases.

6.
Anal Soc Issues Public Policy ; 2022 Jul 12.
Article in English | MEDLINE | ID: covidwho-1927559

ABSTRACT

Operationalizing social group identification as political partisanship, we examine followers' (i.e., US residents') affective experiences and behavioral responses during the initial COVID-19 outbreak in the United States (March to May 2020). In Study 1, we conducted content analyses on major news outlets' coverage of COVID-19 (N = 4319) to examine media polarization and how it plays a role in shaping followers' perceptions of the pandemic and leadership. News outlets trusted by Republicans portrayed US President Donald Trump as more effective, conveyed a stronger sense of certainty with less negative affective tone, and had a lower emphasis on COVID-19 prevention compared to outlets trusted by Democrats. We then conducted a field survey study (Study 2; N = 214) and found that Republicans perceived Trump as more effective, experienced higher positive affect, and engaged in less COVID-19 preventive behavior compared to Democrats. Using a longitudinal survey design in Study 3 (N = 251), we examined how emotional responses evolved in parallel with the pandemic and found further support for Study 2 findings. Collectively, our findings provide insight into the process of leadership from a social identity perspective during times of crisis, illustrating how social identity can inhibit mobilization of united efforts. The findings have implications for leadership of subgroup divides in different organizational and crisis contexts.

7.
Viruses ; 14(3)2022 02 27.
Article in English | MEDLINE | ID: covidwho-1765944

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is the major pathogen that causes diarrhea and high mortality in newborn piglets, with devastating impact on the pig industry. To further understand the molecular epidemiology and genetic diversity of PEDV field strains, in this study the complete genomes of four PEDV variants (HN2021, CH-HNYY-2018, CH-SXWS-2018, and CH-HNKF-2016) obtained from immunized pig farms in central China between 2016 to 2021 were characterized and analyzed. Phylogenetic analysis of the genome and S gene showed that the four strains identified in the present study had evolved into the subgroup G2a, but were distant from the vaccine strain CV777. Additionally, it was noteworthy that a new PEDV strain (named HN2021) belonging to the G2a PEDV subgroup was successfully isolated in vitro and it was further confirmed by RT-PCR that this isolate had a large natural deletion at 207-373 nt of the ORF3 gene, which has never been reported before. Particularly, in terms of pathogenicity evaluation, colostrum deprivation piglets challenged with PEDV HN2021 showed severe diarrhea and high mortality, confirming that PEDV HN2021 was a virulent strain. Hence, PEDV strain HN2021 of subgroup G2a presents a promising vaccine candidate for the control of recurring porcine epidemic diarrhea (PED) in China. This study lays the foundation for better understanding of the genetic evolution and molecular pathogenesis of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Vaccines , Animals , China/epidemiology , Diarrhea , Phylogeny , Swine , Virulence
8.
Front Microbiol ; 13: 782421, 2022.
Article in English | MEDLINE | ID: covidwho-1742229

ABSTRACT

While IgM and IgG response to SARS-CoV-2 has been extensively studied, relatively little is known about secretory IgA (sIgA) response in respiratory mucosa. Here we report IgA response to the SARS-CoV-2 in sputum, throat swabs, and serum with nucleocapsid protein (NP) enzyme-linked immunosorbent assays (ELISA) in a cohort of 28 COVID-19 patients and 55 vaccine recipients. The assays showed sIgA in respiratory mucosa could be detected on the first day after illness onset (AIO), and the median conversion time for sIgA in sputum, throat swabs, and serum was 3, 4, and 10 days, respectively. The positive rates of sIgA first week AIO were 100% (24/28) and 85.7% (24/28) in sputum and throat swabs, respectively, and were both 100% during the mid-onset (2-3 weeks AIO). During the recovery period, sIgA positive rates in sputum and throat swabs gradually decreased from 60.7% (17/28) and 57.1% (16/28) 1 month AIO and the sIgA antibodies were all undetectable 6 months AIO. However, serum IgA positive rate was still 100% at 4 months and 53.6% (15/28) at 6 months. Throat swabs obtained from volunteers who received inactivated SARS-CoV-2 vaccines by intramuscular delivery all showed negative results in IgA ELISA. These findings will likely improve our understanding of respiratory mucosal immunity of this emerging disease and help in containing the pandemic and developing vaccines.

9.
Innovation (Camb) ; 3(2): 100221, 2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1713028

ABSTRACT

The highly pathogenic and readily transmissible SARS-CoV-2 has caused a global coronavirus pandemic, urgently requiring effective countermeasures against its rapid expansion. All available vaccine platforms are being used to generate safe and effective COVID-19 vaccines. Here, we generated a live-attenuated candidate vaccine strain by serial passaging of a SARS-CoV-2 clinical isolate in Vero cells. Deep sequencing revealed the dynamic adaptation of SARS-CoV-2 in Vero cells, resulting in a stable clone with a deletion of seven amino acids (N679SPRRAR685) at the S1/S2 junction of the S protein (named VAS5). VAS5 showed significant attenuation of replication in multiple human cell lines, human airway epithelium organoids, and hACE2 mice. Viral fitness competition assays demonstrated that VAS5 showed specific tropism to Vero cells but decreased fitness in human cells compared with the parental virus. More importantly, a single intranasal injection of VAS5 elicited a high level of neutralizing antibodies and prevented SARS-CoV-2 infection in mice as well as close-contact transmission in golden Syrian hamsters. Structural and biochemical analysis revealed a stable and locked prefusion conformation of the S trimer of VAS5, which most resembles SARS-CoV-2-3Q-2P, an advanced vaccine immunogen (NVAX-CoV2373). Further systematic antigenic profiling and immunogenicity validation confirmed that the VAS5 S trimer presents an enhanced antigenic mimic of the wild-type S trimer. Our results not only provide a potent live-attenuated vaccine candidate against COVID-19 but also clarify the molecular and structural basis for the highly attenuated and super immunogenic phenotype of VAS5.

10.
Cell Res ; 32(4): 375-382, 2022 04.
Article in English | MEDLINE | ID: covidwho-1707327

ABSTRACT

Monoclonal antibodies represent important weapons in our arsenal to against the COVID-19 pandemic. However, this potential is severely limited by the time-consuming process of developing effective antibodies and the relative high cost of manufacturing. Herein, we present a rapid and cost-effective lipid nanoparticle (LNP) encapsulated-mRNA platform for in vivo delivery of SARS-CoV-2 neutralization antibodies. Two mRNAs encoding the light and heavy chains of a potent SARS-CoV-2 neutralizing antibody HB27, which is currently being evaluated in clinical trials, were encapsulated into clinical grade LNP formulations (named as mRNA-HB27-LNP). In vivo characterization demonstrated that intravenous administration of mRNA-HB27-LNP in mice resulted in a longer circulating half-life compared with the original HB27 antibody in protein format. More importantly, a single prophylactic administration of mRNA-HB27-LNP provided protection against SARS-CoV-2 challenge in mice at 1, 7 and even 63 days post administration. In a close contact transmission model, prophylactic administration of mRNA-HB27-LNP prevented SARS-CoV-2 infection between hamsters in a dose-dependent manner. Overall, our results demonstrate a superior long-term protection against SARS-CoV-2 conferred by a single administration of this unique mRNA antibody, highlighting the potential of this universal platform for antibody-based disease prevention and therapy against COVID-19 as well as a variety of other infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/prevention & control , Cricetinae , Humans , Liposomes , Mice , Nanoparticles , Pandemics/prevention & control , RNA, Messenger/genetics , Spike Glycoprotein, Coronavirus
11.
J Food Biochem ; 46(5): e14085, 2022 05.
Article in English | MEDLINE | ID: covidwho-1673175

ABSTRACT

SARS-CoV-2 wreaks havoc around the world, triggering the COVID-19 pandemic. It has been confirmed that the endoribonuclease NSP15 is crucial to the viral replication, and thus identified as a potential drug target against COVID-19. The NSP15 protein was used as the target to conduct high-throughput virtual screening on 30,926 natural products from the NPASS database to identify potential NSP15 inhibitors. And 100 ns molecular dynamics simulations were performed on the NSP15 and NSP15-NPC198199 system. In all, 10 natural products with high docking scores with NSP15 protein were obtained, among which compound NPC198199 scored the highest. The analysis of the binding mode between NPC198199 and NSP15 found that NPC198199 would form H-bond interactions with multiple key residues at the catalytic site. Subsequently, a series of post-dynamics simulation analyses (including RMSD, RMSF, PCA, DCCM, RIN, binding free energy, and H-bond occupancy) were performed to further explore inhibitory mechanism of compound NPC198199 on NSP15 protein at the molecular level. The research strongly indicates that the 10 natural compounds screened can be used as potential inhibitors of NSP15, and provides valuable information for the subsequent drug discovery of anti-SARS-CoV-2. PRACTICAL APPLICATIONS: Natural products play an important role in the treatment of many difficult diseases. In this study, high-throughput virtual screening technology was used to screen the natural product database to obtain potential inhibitors against endoribonuclease NSP15. The binding mechanism between natural products and NSP15 was investigated at the molecular level by molecular dynamics technology so that it is expected to become candidate drugs for the treatment of SARS-CoV-2. We hope that our research can provide new clue to combat COVID-19 and overcome the epidemic situation as soon as possible.


Subject(s)
Antiviral Agents , Biological Products , Endoribonucleases , SARS-CoV-2 , Viral Nonstructural Proteins , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/pharmacology , Endoribonucleases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19 Drug Treatment
12.
Eur J Soc Psychol ; 52(3): 515-527, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1626932

ABSTRACT

This research explored whether people hold double standards in a public crisis. We proposed that during the COVID-19 pandemic, people required others to strictly follow self-quarantine rules and other preventive behaviours, whereas they themselves would not, demonstrating double standards. Moreover, this effect would be moderated by the perceived threat from the pandemic. Using data collected in the United States and China, three studies (N = 2180) tested the hypotheses by measuring (Study 1) and manipulating the perceived threat (Studies 2 and 3). We found that people generally applied higher standards to others than to themselves when it came to following the self-quarantine rules. This effect was strong when a relatively low threat was perceived, but the self-other difference disappeared when the perceived threat was relatively high, as the demands they placed on themselves would increase as the perceived threat intensified, but their requirements of others would be constantly strict.

13.
Int Health ; 12(2): 77-85, 2020 02 12.
Article in English | MEDLINE | ID: covidwho-1387916

ABSTRACT

BACKGROUND: Strategies are urgently needed to mitigate the risk of zoonotic disease emergence in southern China, where pathogens with zoonotic potential are known to circulate in wild animal populations. However, the risk factors leading to emergence are poorly understood, which presents a challenge in developing appropriate mitigation strategies for local communities. METHODS: Residents in rural communities of Yunnan, Guangxi and Guangdong provinces were recruited and enrolled in this study. Data were collected through ethnographic interviews and field observations, and thematically coded and analysed to identify both risk and protective factors for zoonotic disease emergence at the individual, community and policy levels. RESULTS: Eighty-eight ethnographic interviews and 55 field observations were conducted at nine selected sites. Frequent human-animal interactions and low levels of environmental biosecurity in local communities were identified as risks for zoonotic disease emergence. Policies and programmes existing in the communities provide opportunities for zoonotic risk mitigation. CONCLUSIONS: This study explored the relationship among zoonotic risk and human behaviour, environment and policies in rural communities in southern China. It identifies key behavioural risk factors that can be targeted for development of tailored risk-mitigation strategies to reduce the threat of novel zoonoses.


Subject(s)
Animals, Wild/virology , Communicable Diseases, Emerging/transmission , Coronavirus Infections/transmission , Disease Outbreaks/prevention & control , Pneumonia, Viral/transmission , Rural Population , Virus Diseases/transmission , Zoonoses/transmission , Adolescent , Adult , Animals , Betacoronavirus , COVID-19 , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Female , Health Knowledge, Attitudes, Practice , Humans , Interviews as Topic , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Qualitative Research , Risk Factors , SARS-CoV-2 , Severe Acute Respiratory Syndrome , Virus Diseases/epidemiology , Young Adult , Zoonoses/epidemiology , Zoonoses/virology
14.
Water Res ; 204: 117606, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1373297

ABSTRACT

The epidemic of COVID-19 has aroused people's particular attention to biosafety. A growing number of disinfection products have been consumed during this period. However, the flaw of disinfection has not received enough attention, especially in water treatment processes. While cutting down the quantity of microorganisms, disinfection processes exert a considerable selection effect on bacteria and thus reshape the microbial community structure to a great extent, causing the problem of disinfection-residual-bacteria (DRB). These systematic and profound changes could lead to the shift in regrowth potential, bio fouling potential, as well as antibiotic resistance level and might cause a series of potential risks. In this review, we collected and summarized the data from the literature in recent 10 years about the microbial community structure shifting of natural water or wastewater in full-scale treatment plants caused by disinfection. Based on these data, typical DRB with the most reporting frequency after disinfection by chlorine-containing disinfectants, ozone disinfection, and ultraviolet disinfection were identified and summarized, which were the bacteria with a relative abundance of over 5% in the residual bacteria community and the bacteria with an increasing rate of relative abundance over 100% after disinfection. Furthermore, the phylogenic relationship and potential risks of these typical DRB were also analyzed. Twelve out of fifteen typical DRB genera contain pathogenic strains, and many were reported of great secretion ability. Pseudomonas and Acinetobacter possess multiple disinfection resistance and could be considered as model bacteria in future studies of disinfection. We also discussed the growth, secretion, and antibiotic resistance characteristics of DRB, as well as possible control strategies. The DRB phenomenon is not limited to water treatment but also exists in the air and solid disinfection processes, which need more attention and more profound research, especially in the period of COVID-19.


Subject(s)
COVID-19 , Microbiota , Bacteria , Disinfection , Humans , SARS-CoV-2
15.
Natl Sci Rev ; 8(8): nwab053, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1358471

ABSTRACT

Mutations and transient conformational movements of the receptor binding domain (RBD) that make neutralizing epitopes momentarily unavailable present immune escape routes for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To mitigate viral escape, we developed a cocktail of neutralizing antibodies (NAbs) targeting epitopes located on different domains of spike (S) protein. Screening of a library of monoclonal antibodies generated from peripheral blood mononuclear cells of COVID-19 convalescent patients yielded potent NAbs, targeting the N-terminal domain (NTD) and RBD domain of S, effective at nM concentrations. Remarkably, a combination of RBD-targeting NAbs and NTD-binding NAbs, FC05, enhanced the neutralization potency in cell-based assays and an animal model. Results of competitive surface plasmon resonance assays and cryo-electron microscopy (cryo-EM) structures of antigen-binding fragments bound to S unveil determinants of immunogenicity. Combinations of immunogens, identified in the NTD and RBD of S, when immunized in rabbits and macaques, elicited potent protective immune responses against SARS-CoV-2. More importantly, two immunizations of this combination of NTD and RBD immunogens provided complete protection in macaques against a SARS-CoV-2 challenge, without observable antibody-dependent enhancement of infection. These results provide a proof of concept for neutralization-based immunogen design targeting SARS-CoV-2 NTD and RBD.

16.
Cell Discov ; 7(1): 49, 2021 Jul 06.
Article in English | MEDLINE | ID: covidwho-1298837

ABSTRACT

SARS-CoV-2 infection causes a wide spectrum of clinical manifestations in humans, and olfactory dysfunction is one of the most predictive and common symptoms in COVID-19 patients. However, the underlying mechanism by which SARS-CoV-2 infection leads to olfactory disorders remains elusive. Herein, we demonstrate that intranasal inoculation with SARS-CoV-2 induces robust viral replication in the olfactory epithelium (OE), not the olfactory bulb (OB), resulting in transient olfactory dysfunction in humanized ACE2 (hACE2) mice. The sustentacular cells and Bowman's gland cells in the OE were identified as the major target cells of SARS-CoV-2 before invasion into olfactory sensory neurons (OSNs). Remarkably, SARS-CoV-2 infection triggers massive cell death and immune cell infiltration and directly impairs the uniformity of the OE structure. Combined transcriptomic and quantitative proteomic analyses revealed the induction of antiviral and inflammatory responses, as well as the downregulation of olfactory receptor (OR) genes in the OE from the infected animals. Overall, our mouse model recapitulates olfactory dysfunction in COVID-19 patients and provides critical clues for understanding the physiological basis for extrapulmonary manifestations of COVID-19.

17.
Medicine (Baltimore) ; 100(24): e26279, 2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1269620

ABSTRACT

ABSTRACT: Early determination of coronavirus disease 2019 (COVID-19) pneumonia from numerous suspected cases is critical for the early isolation and treatment of patients.The purpose of the study was to develop and validate a rapid screening model to predict early COVID-19 pneumonia from suspected cases using a random forest algorithm in China.A total of 914 initially suspected COVID-19 pneumonia in multiple centers were prospectively included. The computer-assisted embedding method was used to screen the variables. The random forest algorithm was adopted to build a rapid screening model based on the training set. The screening model was evaluated by the confusion matrix and receiver operating characteristic (ROC) analysis in the validation.The rapid screening model was set up based on 4 epidemiological features, 3 clinical manifestations, decreased white blood cell count and lymphocytes, and imaging changes on chest X-ray or computed tomography. The area under the ROC curve was 0.956, and the model had a sensitivity of 83.82% and a specificity of 89.57%. The confusion matrix revealed that the prospective screening model had an accuracy of 87.0% for predicting early COVID-19 pneumonia.Here, we developed and validated a rapid screening model that could predict early COVID-19 pneumonia with high sensitivity and specificity. The use of this model to screen for COVID-19 pneumonia have epidemiological and clinical significance.


Subject(s)
Algorithms , COVID-19 Testing/methods , COVID-19/diagnosis , Mass Screening/methods , SARS-CoV-2/isolation & purification , Adult , China , Female , Humans , Male , Middle Aged , Prospective Studies , ROC Curve , Sensitivity and Specificity
18.
Polit Psychol ; 42(5): 767-793, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1203898

ABSTRACT

Fighting the COVID-19 pandemic requires large numbers of citizens to adopt disease-preventive practices. We contend that national identification can mobilize and motivate people to engage in preventive behaviors to protect the collective, which in return would heighten national identification further. To test these reciprocal links, we conducted studies in two countries with diverse national tactics toward curbing the pandemic: (1) a two-wave longitudinal survey in China (Study 1, N = 1200), where a national goal to fight COVID-19 was clearly set, and (2) a five-wave longitudinal survey in the United States (Study 2, N = 1001), where the national leader, President Trump, rejected the severity of COVID-19 in its early stage. Results revealed that national identification was associated with an increase in disease-preventive behaviors in both countries in general. However, higher national identification was associated with greater trust in Trump's administration among politically conservative American participants, which then was associated with slower adoption of preventive behaviors. The reciprocal effect of disease-preventive behaviors on national identification was observed only in China. Overall, our findings suggest that although national identification may serve as a protective factor in curbing the pandemic, this beneficial effect was reduced in some political contexts.

19.
J Community Appl Soc Psychol ; 32(3): 507-520, 2022.
Article in English | MEDLINE | ID: covidwho-1162515

ABSTRACT

The COVID-19 pandemic is an unprecedented public health crisis that poses a challenge to humanity. Drawing on the stress and coping literature, we argue that people around the world alleviate their anxiety and stress induced by the pandemic through both prosocial and 'self-interested' hoarding behaviours. This cross-cultural survey study examined the pushing (threat perception) and pulling (moral identity) factors that predicted prosocial acts and hoarding, and subsequently psychological well-being. Data were collected from 9 April to 14 May 2020 from 251 participants in the United Kingdom (UK), 268 in the United States (US), 197 in Germany (DE), and 200 in Hong Kong (HK). Whereas threat perception was associated positively with both prosocial acts and hoarding, benevolent moral identity was associated positively with the former but not the latter behaviour. We also observed cross-cultural differences, such that both effects were stronger in more individualistic (UK, US) countries than less individualistic (HK, DE) ones. The findings shed light on the prosocial vs. self-interested behavioural responses of people in different cultures towards the same pandemic crisis.

20.
Zhongguo Jishui Paishui = China Water & Wastewater ; - (2):42, 2021.
Article in English | ProQuest Central | ID: covidwho-1117870

ABSTRACT

The Huoshenshan hospital and Leishenshan hospital are special infectious diseases hospitals that were designed to focus on the treatment of patients infected by new Coronavirus pneumonia( COVID-19). The design of sewage treatment system was "pre-disinfection contact tank + septic tank + lifting pump station( including crushed grille) + regulating tank + MBBR biochemical tank +coagulation sedimentation tank + contact disinfection tank ". MBBR process could achieve efficient removal of pollutants in sewage at low temperature. Two-stage disinfection process guaranteed 100% virus elimination. At the same time,HDPE membrane was laid under the sewage station according to the landfill standard to ensure the full collection,disinfection and discharge of rainwater and sewage. The sludge was collected and transported as hazardous waste after disinfection and dehydration. The waste gas was collected,deodorized and disinfected in a unified way,so as to realize the full collection and treatment of rainwater,sewage,sludge and waste gas. At present,the operations of the sewage stations of Huoshenshan and Leishenshan hospitals had kept stable,and the relevant effluent indexes met the design requirements. COD concentration was stable below 50 mg/L,ammonia nitrogen was stable below 2 mg/L,residual chlorine was stable near 13 mg/L. Therefore,the pollutant removal and disinfection effect were stable during the whole operation.

SELECTION OF CITATIONS
SEARCH DETAIL